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Abstract

The program of systematic large-scale self-consistent nuclear mass calculations that is based on the nuclear density functional theory represents
a rich scientific agenda that is closely aligned with the main research directions in modern nuclear structure and astrophysics, especially the
radioactive nuclear beam physics. The quest for the microscopic understanding of the phenomenon of nuclear binding represents, in fact, a number
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f fundamental and crucial questions of the quantum many-body problem, including the proper treatment of correlations and dynamics in the
resence of symmetry breaking. Recent advances and open problems in the field of nuclear mass calculations are presented and discussed.
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. Introduction

The study of nuclei far from stability is an increasingly
mportant part of a nuclear physics portfolio [1–3]. As radioac-
ive beams gradually expand the borders of the nuclear land-
cape, theoretical modeling of the nucleus is changing in signif-
cant ways. The crucial question for the field [2], namely “What
inds protons and neutrons into stable nuclei and rare isotopes?”,
icely underlines this point: indeed, the data on rare isotopes
ith the large neutron-to-proton imbalance indicate that there

re many gaps in our present understanding.
Short-lived exotic nuclei offer unique tests of those aspects

f the nuclear theory that depend on neutron excess [4,5]. The
ajor challenge is to predict or describe in detail exotic new

roperties of nuclei far from the stability valley, and to explain
he origins of these properties. New ideas and progress in com-
uter technology have allowed nuclear theorists to understand
its and pieces of nuclear structure quantitatively.

∗ Corresponding author.
E-mail address: witek@utk.edu (W. Nazarewicz).

The new experimental developments inevitably require
safe and reliable theoretical predictions of nuclear properties
throughout the whole nuclear chart in two main directions: (i)
along the isospin axis, i.e., going outwards from the beta sta-
bility line to the neutron and proton drip lines, and (ii) towards
the uncharted territory of super-heavy elements at the limit of
mass and charge. The tool of choice is the nuclear density func-
tional theory (DFT) based on the self-consistent Hartree–Fock–
Bogoliubov (HFB) method. The key component is the universal
energy density functional, which will be able to describe prop-
erties of finite nuclei as well as extended asymmetric nucleonic
matter. The development of such a universal functional, includ-
ing dynamical effects and symmetry restoration, is one of the
main goals of the field.

By employing various criteria (agreement with measured
masses, radii, low-lying excited states, giant vibrations, rota-
tional properties, and other global nuclear characteristics), one
aims at adjusting the coupling constants of the functional. By
finding correlations between parameters, one hopes to reduce
their number and to understand physical reasons why differ-
ent parametrizations yield similar results. One may also want
to expand the parametrizations to cover aspects dictated by
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physics arguments and/or motivations coming from the ef-
fective field theory and QCD. The main challenges in this
quest have been nicely summarized through five questions
[6]:

• What is the form of the nuclear energy density functional?
• What are the constraints on the nuclear energy density func-

tional?
• What is the form of the pairing functional?
• How to account for quantum correlations and symmetry-

breaking effects?
• How to optimize computational techniques and error analy-

sis?

The aim of this paper is to briefly review the present state
of the large-scale microscopic nuclear mass calculations and
to discuss improvements needed. Section 2 introduces the DFT
and Skyrme-HFB method. Some details concerning global mass
calculations are given in Section 3. The long-term program
is outlined in Section 4. Finally, the summary is given in
Section 5.

2. Nuclear energy density functional

A theoretical framework aiming at the microscopic de-
scription of nuclear masses and capable of extrapolating into
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Historically, the first nuclear energy density functionals ap-
peared in the context of Hartree–Fock (HF) or HFB methods
and zero-range interactions such as the Skyrme force. However,
it was realized afterwards that – in the spirit of the DFT – an ef-
fective interaction could be secondary to the functional, i.e., it is
the density functional that defines the force. This is the strategy
that we are going to follow.

2.1. The densities

The main ingredients of the nuclear DFT are the local nu-
cleonic densities. Following the standard definitions [14,10],
one considers local particle–hole (p–h) densities: particle ρ(r),
kinetic τ(r), spin sk(r), spin-kinetic T k(r), current jk(r),
tensor-kinetic F k(r), spin-current Jkl(r), as well as the cor-
responding local particle–particle (p–p; or pairing) densities:

ρ̃(r), τ̃(r), s̃k(r), T̃ k(r), j̃k(r), F̃ k(r), and J̃kl(r).
The local p–h and p–p densities are defined by the spin-

dependent one-body density matrices:

ρ(rσ, r′σ′) = 1
2ρ(r, r′)δσσ′ + 1

2

∑
i

(σ|σi|σ′)ρi(r, r
′),

ρ̃(rσ, r′σ′) = 1
2 ρ̃(r, r′)δσσ′ + 1

2

∑
i

(σ|σi|σ′)ρ̃i(r, r
′).

(1)
n unknown territory must fulfill several strict requirements.
irst, it must be general enough to be confidently applied

o a region of the nuclear landscape whose properties are
argely unknown. Second, it should be capable of handling
ymmetry-breaking effects resulting in a large variety of in-
rinsic nuclear deformations. Thirdly, it should describe fi-
ite nuclei and the bulk nuclear matter. Finally, in addition
o observables, the method should provide associated error
ars.

These requirements are met by the DFT in the for-
ulation of Kohn and Sham [7]. The main ingredient of

he non-relativistic nuclear DFT [8] (for relativistic nu-
lear DFT, see Ref. [9]) is the energy density functional
hat depends on densities and currents representing dis-
ributions of nucleonic matter, spins, momentum, and ki-
etic energy, as well as their derivatives (gradient terms).
tandard Skyrme functionals employed in self-consistent
ean-field calculations are parametrized by means of about

en coupling constants that are adjusted to basic prop-
rties of nuclear matter (e.g., saturation density, bind-
ng energy per nucleon) and to selected data on magic
uclei. The functionals are augmented by the pairing
erm which describes nuclear superfluidity [10]. When
ot corrected by additional phenomenological terms, stan-
ard functionals reproduce total binding energies with an
ms error of the order of 2–4 MeV [11–13]. However,
hey have been successfully tested over the whole nu-
lear chart to a broad range of phenomena, and usu-
lly perform quite well when applied to energy dif-
erences, radii, and nuclear moments and deformations
8].
For instance,

ρ(r) = ρ(r, r), τ(r) = ∇r∇r′ρ(r, r′)|r′=r, ρ̃(r) = ρ̃(r, r),

Jij(r) = 1

2i
(∇i − ∇′

i)ρj(r, r′)|r′=r. (2)

Since the nuclear DFT deals with two kinds of nucleons, the
isospin degree of freedom has to be introduced and the isoscalar
and isovector densities have to be considered[10].

2.2. The energy density functional

The energy density functional has the form

E[ρ, ρ̃] =
∫

d3rH(r), (3)

where energy density H(r) is usually written as a sum of the
p–h energy density H(r) and the p–p energy density H̃(r). Ac-
cording to the DFT, there exists a nuclear universal energy func-
tional that yields the exact binding energy of the nuclear system.
This functional includes, in principle, all many-nucleon correla-
tions.

The actual form of the nuclear energy functional is unknown.
The strategy adopted by many practitioners is to build a func-
tional around that generated by the Skyrme interaction. The most
general form of the energy density functional that is quadratic in
local densities and preserves the basic symmetries of the strong
interaction, such as time-reversal symmetry, charge invariance,
and proton–neutron symmetry, has been proposed in [10]. In
practical applications, however, simplified forms of this func-
tional have been used. For instance, one particular representa-
tion of the energy functional for the ground states of even–even
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nuclei can be written as:

H(r) = �
2
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)∑
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ρ2
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8
(t1x1 + t2x2)

∑
ij

J
2
ij + 1

8
(t1 − t2)

∑
q,ij

J
2
q,ij

−1

2
W0

∑
ijk

εijk

[
ρ∇kJij +

∑
q

ρq∇kJq,ij

]
+ HC(r)

(4)

The HFB equations (6), also called the Bogoliubov-de
Gennes equations by condensed matter physicists, are the gen-
eralized Kohn-Sham equations of the DFT. It is worth noting
that – in its original formulation [15] – the DFT formalism im-
plicitly includes the full correlation functional. In most nuclear
applications, however, the correlation corrections are added af-
terwards. Those corrections usually include the following terms:
the center-of-mass correction, rotational correction associated
with the spontaneous breaking of rotational symmetry, vibra-
tional correction (quantum zero-point vibrational fluctuations),
particle-number correction due to the broken gauge invariance,
as well as other terms.

The spectrum of quasi-particle energies E is continuous for
|E| > −λ and discrete for |E| < −λ. However, when solving
the HFB equations on a coordinate-space lattice of points or
by expanding quasi-particle wave functions in a finite basis, the
quasi-particle spectrum is discretized and one can use the no-
tation Vk(rσ) = V (Ek, rσ) and Uk(rσ) = U(Ek, rσ). Since for
Ek > 0 and λ < 0 the lower components Vk(rσ) are localized
functions of r, the density matrices,

ρ(rσ, r′σ′) =
∑

k

Vk(rσ)V ∗
k (r′σ′),

ρ̃(rσ, r′σ′) = −
∑

k

Vk(rσ)U∗
k (r′σ′), (7)
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and

H̃(r) = 1

2
V0

[
1 − V1

(
ρ

ρ0

)γ]∑
q

ρ̃2
q, (5)

where q labels the neutron (q = n) or proton (q = p) densities
and the quantities which do not carry index q are the isoscalar
densities (sums of proton and neutron densities; e.g., ρ ≡ ρ(r) =
ρn(r) + ρp(r)).

The p–p energy functional (5) corresponds to a density-
dependent delta interaction. Usually, γ = 1, ρ0 = 0.16 fm−3,
and V1 = 0, 1, or 1/2 for volume-, surface-, or mixed-type pair-
ing. In Eq. (4), HC(r) stands for the Coulomb energy density
with the exchange term treated in the Slater approximation.

As seen from Eqs. (4) and (5), typical Skyrme density func-
tionals include about 14 unknown parameters. Some of them are
usually adjusted to reproduce the basic properties of the infinite
nuclear matter while the remaining coupling constants are fitted
to known nuclear masses, radii, and other measured properties.

2.3. Variational equations

By varying the energy functional (3) with respect to the den-
sity matrices ρ and ρ̃ one arrives at the HFB equations:(

h − λ h̃

h̃ −h + λ

)(
U

V

)
= E

(
U

V

)
, (6)

where U = U(E, rσ), V = V (E, rσ) are the HFB wave func-
tions, and h and h̃ are the local particle and pairing mean-field
Hamiltonians.
re always localized. The norms Nk of the lower components
efine the total number of particles

k =
∑
σ

∫
d3r|Vk(rσ)|2, N =

∑
k

Nk =
∫

d3rρ(r). (8)

For spherical nuclei, the self-consistent HFB equations are
est solved in the coordinate space where they form a set of
D radial differential equations [16,17]. In the case of deformed
uclei, however, the solution of deformed HFB equations in co-
rdinate space is a difficult and time-consuming task. For axial
uclei, the corresponding 2D differential equations can be solved
y using the basis-spline methods (see, e.g., Ref. [18]). For tri-
xial nuclei, 3D solutions in a restricted space are possible by
sing the so-called two-basis method [19].

. Large-scale microscopic nuclear mass calculations

The large-scale microscopic nuclear mass calculations, such
s those of Refs. [13,20–22], typically require that the variational
quations are repeatedly solved for thousands of nuclei. For
xample, when adjusting the parameters of the energy density
unctional to measured masses, one has to calculate ground-state
onfigurations of around two-thousand nuclei many times during
he fitting process. Actually, the situation is even more compli-
ated, as several independent calculations have to be carried out
or a given nucleus to find the ground-state energy of the system
mong several coexisting local minima. Furthermore, if odd-A
nd odd–odd nuclei are considered during the fitting process,
any one-quasiparticle and two-quasiparticle states have to be

onsidered to find the actual ground state. Finally, when the func-
ional has been established, properties of around ten-thousand
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particle-bound nuclei throughout the nuclear chart can be com-
puted. All in all, fitting a functional and preparing a mass ta-
ble is a challenging computational problem that requires highly
optimized numerical codes and excellent utilization of modern
multiprocessor computer resources.

Our group has been laying out theoretical foundations and
constructing computational tools to tackle this ambitious task.
We utilize a fast HFBRAD code for spherical HFB calculations
[23], which takes no more than 10 CPU minutes per nucleus
on an Intel Xeon 2.8 GHz processor, as well as the HFBTHO
code for axially deformed HFB calculations [24,25] with ac-
ceptable processor speed - averaging to about 1 CPU hour per
nucleus.

The large-scale mass calculations based on the HFBTHO
code, extended with a minimal MPI (message passing inter-
face) communication in order to run in a parallel regime across
the nodes of the multiprocessor computer, are illustrated in
Figs. 1 and 2, which display, respectively, calculated charts
of nuclear deformations and two-neutron separation energies
for particle-bound even–even nuclei. We used the SkP energy
functional [16], which has a general form given by Eqs. (4)
and (5). Our load-balancing routine, which scales the problem
to 200 processors, allows us to perform these calculations in
a single 24 wall-clock hour run on a 4 Tflop machine Chee-
tah at ORNL (1 Tflop = 1 × 1012 floating-point operations/sec)
[22]. For the details of the Skyrme-HFB deformed nuclear
m
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Fig. 2. Similar to Fig. 1 except for two-neutron separation energies.

3.1. Transformed harmonic oscillator basis

Going away from the beta stability valley towards particle
drip lines, the Fermi energy becomes very small and the nucle-
onic densities and fields acquire large spatial extensions due to
the coupling to the particle continuum. In this region of weakly
bound nuclei, the asymptotic behavior of nuclear densities has
an effect on nuclear properties. Consequently, when performing
calculations for drip-line systems, it is important to have a firm
grasp on physics at large distances. The recently developed HF-
BTHO technique based on the transformed harmonic oscillator
(THO) method [27,28,22] is very helpful in this respect: it is
fast, efficient, and easy to implement.

Fig. 3 shows the neutron density of the deformed nucleus
110Zn obtained in two configurational calculations based on
expansions in the harmonic oscillator (HO) and THO bases
[27,28,22] compared to full-fledged 2D coordinate-space calcu-
lations [30,29] with the box boundary conditions. Every point
in the figure corresponds to the value of the neutron density
at a given Gauss-integration node in the z–ρ plane. Since the
nucleus is deformed, and there are always several nodes near a
sphere of the same radius r =

√
z2 + ρ2, there can be seen some

scatter of points corresponding to different densities in different
directions. While the significant deviation from the correct de-
caying behavior is seen in the HO results, the THO expansion
agrees very well with the deformed coordinate-space method.
O
c
B

3

d
(
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ass table with SLy4 and SkP energy density functionals, see
26].

At present, calculations of nuclear masses performed by us-
ng the Skyrme density functionals fitted to experimental data
ive results precise up to the rms deviation of about 0.70 MeV.
owever, standard functionals that have been adjusted not only

o masses but to several other nuclear characteristics reproduce
uclear masses with the rms deviations of only 3.14 MeV (SkP)
r 5.10 MeV (SLy4) [24]. It is obvious that such a situation
alls for improvement and a consistent search for better density
unctionals must be pursued. In the following, some particular
spects of our Skyrme-DFT calculations are briefly discussed.

ig. 1. Quadrupole deformations β2 for all even–even particle-bound nuclei
alculated with the SkP energy density functional [16] in the p–h channel and
he volume delta pairing using the deformed HFBTHO code with 20 THO shells.
ther promising techniques that can alternatively be used in this
ontext are the Gaussian-expansion basis method [31] and the
erggren expansion method [32].

.2. Regularization of the contact pairing interaction

When employing contact pairing interactions such as the
ensity-dependent delta force resulting in the pairing functional
5), one has to apply a cut-off procedure and use a finite space of
ingle-particle states [16]. When this space increases, the pair-
ng energy diverges for any strength of the interaction; there-
ore, one has to readjust the pairing strength for each size of
he single-particle space [17]. Such renormalization procedure
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Fig. 3. Comparison of the neutron densities (in logarithmic scale) calculated
with SLy4 Skyrme parametrization and volume delta pairing for the deformed
nucleus 110Zn using coordinate-space 2D calculations (solid squares) with the
configurational calculations based on THO (open squares) and HO (open circles)
basis [29]. Each point corresponds to one Gauss-integration node in the z–ρ

plane, and the results are plotted as functions of the distance from the origin,

r =
√

z2 + ρ2.

is performed in the spirit of the effective field theory, whereupon
contact interactions are used to describe low-energy phenomena
while the coupling constants are readjusted for any given energy
cut-off to take into account neglected high-energy effects. It has
been shown that by carrying out renormalization for each value
of the cut-off energy, one practically eliminates the dependence
of the HFB results on the size of the single-particle space.

Recently, the subject of the contact pairing force has been
addressed in [33–37] suggesting the renormalization procedure

can be replaced by a regularization scheme which removes the
cut-off energy dependence of the pairing strength. Differences
between the HFB results emerging from the pairing renormaliza-
tion and pairing regularization procedures have been analyzed
in [38] for both spherical and deformed nuclei. Fig. 4 shows
differences between the HFB-SkP results for the deformed Er
nuclei obtained using pairing renormalization and regulariza-
tion. While the regularization method is better theoretically mo-
tivated, it is seen that both methods give indeed very similar
results.

3.3. Particle number projection

The advantage of the mean-field approach to the pairing prob-
lem lies in its simplicity that allows a straightforward inter-
pretation in terms of pairing fields and deformations (pairing
gaps) associated with the spontaneous breaking of gauge sym-
metry. However, in the intrinsic-system description, the particle-
number invariance is internally broken. Therefore, to relate to
experiment, the particle number symmetry needs to be restored.
This can be done on various levels, including the quasiparticle
random phase approximation, Lipkin–Nogami (LN) method, the
projected LN method (PLN) [39,22,21], and the particle-number
projection before variation (PNP) [40–42].

Recently, particle-number restoration before variation has
b
w
t
t
o
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F RG) p
a ions a
w mixed
ig. 4. Differences between pairing renormalization (RN) and regularization (
nd (d) the average neutron and proton gaps. Equilibrium quadrupole deformat
ithin the deformed HFBTHO method using SkP Skyrme parametrization and
een incorporated for the first time into the Skyrme-DFT frame-
ork employing zero-range pairing [43]. It was demonstrated

hat the resulting projected HFB equations can be expressed in
erms of local gauge-angle-dependent densities. In [43], results
f PNP calculations have been compared with those obtained
ithin LN and PLN methods. While the PLN gives results close

rocedures for (a) total binding energies, (b) two neutron separation energies,
re shown on panel (c). Calculations are performed for the chain of Er isotopes
delta pairing.
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Fig. 5. The total binding energy (with respect to a linear reference) as a function of the neutron number N for even–even nuclei around doubly magic 40Ca, 48Ca,
100Sn, 132Sn calculated in LN, PLN, and PNP methods by using the SLy4 functional and mixed pairing. The crosses for magic nuclei indicate the PLN results
obtained by projecting from neighboring nuclei, as indicated by arrows.

to PNP for open-shell nuclei, for closed-shell nuclei it breaks
down with more than one MeV difference in the total bind-
ing energy; see Fig. 5. This pathological behavior of LN and
PLN methods around closed-shell nuclei can be partly cured by
performing particle-number projection from neighboring open-
shell systems [44]. This result is important in the context of
large-scale microscopic mass calculations such as those of Ref.
[21]. To be on the safe side, however, it is always recommended
to apply the complete PNP procedure around closed shells.

4. Towards the universal nuclear energy density
functional

Developing a nuclear density functional requires a better un-
derstanding of the density and gradient dependence, spin and
isospin effects, and pairing, as well as an improved treatment of
symmetry-breaking effects and many-body correlations. Below
are summarized the areas of current theoretical activities in this
field.

4.1. Density and gradient dependence

An important avenue is to enrich the density dependence of
the isoscalar and isovector coupling constants, both in the p–h
[45,46] and p–p channels [47–49]. In particular, as the energy
functional is supposed to describe those nuclear features that are
r
d
b

One of the crucial challenges in microscopic theory of nu-
clear masses is to better understand salient features of the nu-
clear symmetry energy. The symmetry energy can be extracted
directly from the calculated binding energy of finite nuclei,
after subtracting shell effects [51]. The goal is to understand
connections between the symmetry energy and isoscalar and
isovector mean fields, and in particular the influence of effec-
tive mass and pair correlations on symmetry energy versus the
isospin. Such understanding will allow us to better determine
isospin corrections to nuclear mean fields and energy density
functionals.

Recently, important indications on how to construct the nu-
clear energy functional have been obtained within the effective
field theory (see, e.g., Refs. [52–54]). Even if one still has to
readjust and fine-tune the parameters for a precise description
of nuclear data, one can gain important insights into the struc-
ture of the functional, especially the dependence of the coupling
constants on nuclear densities. In addition, the systematic, con-
trolled momentum expansion on which the effective field theory
is based offers a way to estimate theoretical errors (see Section
4.4).

4.2. Time-odd fields

In the self-consistent method, the average nucleonic field is
obtained from the nucleonic density. Consequently, in a highly
p
t
e

elated to collective dynamics, it seems important to enrich the
ensity dependence of the effective mass in order to differentiate
etween its value in the bulk and at the Fermi surface [50,20].
olarized high-spin state, the mean-field potential is expected
o acquire appreciable time-odd components [55,56]. How-
ver, such terms should be present in all nuclear states with
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non-zero angular momentum, including ground states of odd-
mass and odd-odd nuclei [57]. It is rather clear that without
getting a handle on the time-odd fields, it will be impossible
to make precise predictions for binding energies of most of the
nuclei.

The time-odd terms are very poorly known. An important
task is to learn about them through an analysis of high-spin states
and spin–isospin excitations. Some of the time-odd fields have
been studied in [58] in the context of Gamow-Teller beta de-
cays in radioactive nuclei by constraining the energy functional
to the empirical spin–isospin Landau parameters. The coupling
constants of the remaining terms can, in principle, be found
by performing systematic studies of rotating nuclei. This strat-
egy has recently been followed in the Skyrme-HF analysis of
high-spin terminating states [59,60]. Those fully aligned states
have fairly simple single-particle configurations, and they pro-
vide an excellent testing ground for the time-odd densities and
fields.

4.3. Dynamical corrections

The correlation term, accounting for correlations going
beyond the simple product state, is an integral part of the
DFT. Since nuclei are self-bound systems, many-body corre-
lations due to spontaneous symmetry-breaking effects are of
particular importance. A large part of those correlations can
i
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4.3.1. Center-of-mass correction
The center-of-mass (c.m.) correction, due to the violation of

the translational invariance, is always included in calculations,
but its practical implementations differ from functional to func-
tional [57,8]. For some functionals, the treatment is fully vari-
ational; for some others the c.m. term is computed following
the HFB procedure; for some functionals a simple one-body ap-
proximation is used. These apparently technical differences do
matter as the actual form of the c.m. correction has a significant
impact on the surface properties [57].

A good example nicely illustrating the above point has re-
cently been discussed in [51]: for the two functionals, SLy4 and
SLy6, which were fitted with precisely the same strategy but
differ in their treatment of c.m. correction, the surface energy
coefficient differs by as much as 0.7 MeV. While the two-body
(albeit perturbative) treatment of the c.m. correction does not
reduce the overall rms error of the fit to nuclear masses [20], it
certainly has a significant impact on binding energies of highly
deformed configurations (such as fission isomers), fission barri-
ers, and fission trajectories.

4.3.2. Particle-number and isospin corrections
As already discussed in Section 3.3, efficient numerical

codes that allow for large-scale, self-consistent variational cal-
culations after projecting onto a good particle number have
been developed [43]. The particle-number conserving HFB
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ndeed be included by considering symmetry-breaking prod-
ct states. Within the mean-field approach, one can under-
tand many physical observables by directly employing broken-
ymmetry states; however, for finite systems, a quantitative
escription often does require symmetry restoration. For this
urpose, one can apply a variety of theoretical techniques, in
articular projection methods, the generator coordinate method
GCM), the random phase approximation (RPA), and various
pproximations performed on top of self-consistent mean fields
61–63].

In this context, it is important to recall that the realistic en-
rgy density functional does not have to be related to any given
ffective Hamiltonian. This creates a problem if a symmetry is
pontaneously broken. While the projection can be carried out in
straightforward manner for energy functionals that are related

o a Hamiltonian, the restoration of spontaneously broken sym-
etries of a general density functional still poses a conceptional

ilemma that needs to be properly addressed [64–66].
Since the correlation term is a part of the functional, it should

e treated as such during the variational procedure and during
he fitting process in which the functional’s coupling constants
re determined. So far, perhaps with the exception of the center-
f-mass term (see Section 4.3.1 below), such an ambitious pro-
ram has not been carried out. In the near future, one hopes
o work out approximate expressions for the correlation term
hat would capture the essence of results of microscopic cal-
ulations performed on top of self-consistent mean fields. In
his way, the hope is to develop the tractable parametrization
f the correlation energy in terms of local densities that would
llow an explicit inclusion of dynamical effects into the energy
unctional.
quations [40,41] with Skyrme functionals can be simply ob-
ained from the standard Skyrme–HFB equations in coordi-
ate space by replacing the intrinsic densities and currents by
heir gauge-angle dependent counterparts. Using the variation-
fter-projection method, one can properly describe transitions
etween normal and superconducting phases in finite systems,
hich are inherent in (semi)magic nuclei.
As mentioned above, the restoration of broken symmetries

n the framework of DFT causes a number of questions, mainly
elated to the density dependence of the underlying interaction
nd to different treatment of particle–hole and particle–particle
hannels [42,67]. These questions are a matter of ongoing in-
ensive research [65,66].

Related to the particle-number symmetry, but different in ori-
in and treatment, is the question of the spontaneous isospin
reaking. The isospin-breaking correction is of particular im-
ortance around the N ∼ Z line. The isoscalar pairing is be-
ieved to contribute to the additional binding of N = Z nuclei,
he so-called Wigner energy [68]. However, basic questions re-
arding the collectivity of such a phase still remain unanswered,
nd should be part of the future scientific agenda.

Apart from the presence of charge-dependent terms in the
unctional, such as the Coulomb term, the isospin symmetry is
roken by the quasiparticle mean field (the generalized prod-
ct wave function is not an eigenstate of isospin). Several tech-
iques have been developed to restore isospin (see the discus-
ion in [10,69] and references quoted therein). It is fair to say,
owever, that in spite of many attempts to extend the quasipar-
icle approach to incorporate the effect of proton-neutron cor-
elations, no symmetry-unrestricted mean-field calculations of
roton–neutron pairing, based on realistic effective interaction
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and the isospin-conserving formalism, have been carried out so
far.

4.3.3. Rotational and vibrational zero-energy corrections
The rotational–vibrational correlations are important aspects

of nuclear collective dynamics; they also contribute to nuclear
binding through quantum zero-point corrections. To estimate the
magnitude of the rotational–vibrational corrections, one usually
applies RPA [70], GCM [63], or the Gaussian overlap approxi-
mation to GCM [71–74].

Regardless of the approach used, a key point is the choice of
collective subspace. In the case of GCM and related methods,
the collective manifold is determined by the set of external fields
associated with the collective motion of the system. In most
practical applications, one considers five quadrupole degrees of
freedom that give rise to nuclear rotations and quadrupole vibra-
tions, octupole deformations, and pairing vibrations [75,70]. An
important step towards the microscopic description of correla-
tion energies are the recent large-scale benchmark calculations
of ground-state quadrupole correlations of binding energies for
all even-even nuclei, from 16O up to the superheavy systems
[63].

4.4. Fitting strategy and error analysis

One of the still-unsolved questions is an appropriate se-
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5. Summary

This paper discusses the status, advances, open problems,
and perspectives in the area of large-scale microscopic nuclear
mass calculations. This field of research is past phenomeno-
logical approaches that gave us a very good understanding of
general features and trends, but lacked fundamental derivations
and had limited predictive power. At present, the focus is on mi-
croscopic descriptions of nuclei whereupon they are treated as
finite quantum objects built of (quasi)nucleons. Nuclear ground
states and masses are in this approach determined by basic fields,
which are the particle and spin densities along with their deriva-
tives and gradients up to the second order in relative momenta.
These fields interact in such a way that the total energy of a
given system is a functional of densities, defined and under-
stood in the general framework of the Kohn–Sham theory. The
determination of such a universal functional, along with all the
dynamic corrections required by data, is the main purpose of cur-
rent investigations. In this endeavor, we strive not only to have
a reliable theoretical tool to calculate properties of very exotic
systems that will not be soon accessible in experiment, but also
wish to have a spectroscopic quality description of well-known
systems, in which very precise data do exist now, and can be
used as a rich source for determination of theoretical parame-
ters. Such a program of research should not only be rooted in
the fundamentals of low-energy QCD methods and ideas, but
a
c
p

A

E
o
(
c
A
0
(
f

R

ection of experimental data that would allow for a more-or-
ess unique determination of the coupling constants defining
he energy functional. To this end, one usually uses certain
onstraints obtained by extrapolating nuclear data to an infi-
ite system and selected data for finite nuclei. The sensitiv-
ty of the final fit to the choice of this data set leads to a
lethora of parameterizations currently available in the litera-
ure.

Most of the currently used density functionals correctly re-
roduce generic trends in nuclear masses – as selected masses
re usually considered in the data set – but their descrip-
ions of other quantities vary. Moreover, they often signif-
cantly differ in parameters or coupling constants [8]. This
uggests that yet-unresolved correlations may exist between
hese parameters, and only certain combinations thereof are
mportant [76,51]. Such correlations would explain the fact
hat widely different parameterizations lead to fairly similar re-
ults.

The present stage of theory requires constructing new energy
ensity functionals supplemented by a complete error and co-
ariance analysis. It is not sufficient to “predict” properties of
xotic nuclei by extrapolating properties of those measured in
xperiment. One must also quantitatively determine errors re-
ated to such an extrapolation. Moreover, for experimental work
t is essential that an improvement gained by measuring one or
wo more isotopes be quantitatively known. From a theoretical
erspective, one must also know the confidence level with which
he parameters of the functional are determined. An analysis of
his type constitutes a standard approach in other domains of
hysics, but they are seldom performed in theoretical nuclear
tructure research.
lso, by definition, must rely on experiment for elements that
annot be derived from first principles. It is a vast and ambitious
rogram presently under way.
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37] T. Nikšić, P. Ring, D. Vretenar, Phys. Rev. C 71 (2005) 044320.
38] P.J. Borycki, J. Dobaczewski, W. Nazarewicz, M.V. Stoitsov, Phys. Rev.

C., submitted for publication.
39] J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 47 (1993) 2418.
40] J.A. Sheikh, P. Ring, Nucl. Phys. A 665 (2000) 71.
41] J.A. Sheikh, P. Ring, E. Lopes, R. Rossignoli, Phys. Rev. C 66 (2002)

044318.
42] M. Anguiano, J.L. Egido, L.M. Robledo, Nucl. Phys. A 696 (2001)

467.
43] M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, J. Terasaki, Eur. Phys. J.

A 25 (Suppl. 1) (2005) 567, in preparation.
64] J.P. Perdew, A. Savin, K. Burke, Phys. Rev A 51 (1995) 4531.
65] M. Stoitsov et al., in preparation; talk at the INT Workshop

on Towards a Universal Density Functional for Nuclei, September
2005. http://www.int.washington.edu/talks/WorkShops/int 05 3/People/
Stoitsov M/mstoitsov.pdf.

66] M. Bender, T. Duguet, Talks at the INT Workshop on Pairing De-
grees of Freedom in Nuclei and the Nuclear Medium, November
2005. http://www.int.washington.edu/talks/WorkShops/int 05 3/People/
Duguet T/duguet.pdf http://www.int.washington.edu/talks/WorkShops/
int 05 3/People/Bender M/Bender.pdf.

67] M. Stoitsov, J. Dobaczewski, W. Nazarewicz, P.G. Reinhard, J. Terasaki,
in: Aldo Covello (Ed.), Proceedings of the 8th International Spring Sem-
inar on Nuclear Physics, Key Topics in Nuclear Structure, Paestum, Italy
2004,World Scientific, Singapore, p. 167.

68] W. Satuła, R. Wyss, M. Rafalski, Eur. Phys. J. A 25 (Suppl. 1) (2005) 559.
69] S. Głowacz, W. Satuła, R.A. Wyss, Eur. Phys.J. A 19 (2004) 33.
70] S. Baroni, M. Armati, F. Barranco, R.A. Broglia, G. Colo, G. Gori, E.

Vigezzi, J. Phys. G 30 (2004) 1353.
71] M. Bender, G. Bertsch, P.-H. Heenen, Phys. Rev. C 69 (2004) 034340.
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